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Abstract

* ~ ~ SNstems with wide bandwidth noise inputs are a common occurrence in

stochastic control and communication theory and elsewhere; e.g., tracking

or synchronization systems such as phase locked loops (PLL). One is often

* interested in calculating such quantities as the probability of escape

from a desired 'Ierror' set, in some time interval, or the mean time for Y

such escape. Diffusion approximations (the system obtained in the limit

bandwidth - )are often used for this, being easier to analyze. When the

noise effects in the physical system are small, one is tempted to do an

asymptotic analysis (noise intensity *0) on the diffusion approximation,

and use this for the desired estimates on the original system. Such a

- procedure does not work in general: the double limit bandwidth- ,

- intensity -~ 0 is not always justified. Under quite broad conditions on

the noise processes, it is justified for the systems studied here.' We

- study a particular form of the PLL owing to the great practical importance

of the system and because it provides a useful vehicle for understanding

- the extent of validity of the asymptotic methods for such systems. The

I basic analytical techniques are from the theory of large deviations. One

seeks information on the escape probabilities, mean times, and on the most

likely exit paths and exit locations. Also, we seek information on the

*interactions between the signals to be tracked and the noise which are most

likely to lead to exit. The large deviations technique is eminently

suited to this job.

Simulations aetaken inorder tounderstand terange ofvalidity o

the asymptotic method. Agreement between the predictions and sample esti-

*mates is good over noise intensity levels which seem to be ever larger than

r



--- those typically occurring in practice. Since the events whose probability

is of interest have small probability, an imortance sampling scheme is

used to 'quicken' the simulations. The scheme works well. The required

measure transformations are suggested by the theory of large deviations,

and are obtained by solving the associated variational problem. The

technique seems to be very appropriate as both an analysis and design

tool for such systems.

Key Words: large deviations, approximations of systems with wide

bandwidth noise, importance sampling, quick simulation, small noise

4A diffusion models, asymptotic methods, phase locked loops, synchronization

systems.
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Abstract

Systems with wide bandwidth noise inputs are a common occurrence in

stochastic control and communication theory and elsewhere; e.g., tracking-

or synchronization systems such as phase locked loops (PLL). One is often

interested in calculating such quantities as the probability of escape

from a desired 'error' set, in some time interval, or the mean time for

*. such escape. Diffusion approximations (the system obtained in the limit

bandwidth - w) are often used for this, being easier to analyze. When the

noise effects in the physical system are small, one is tempted to do an

asymptotic analysis (noise intensity - 0) on the diffusion approximation,

and use this for the desired estimates on the original system. Such a

procedure does not work in general: the double limit bandwidth --

intensity 0 is not always justified. Under quite broad conditions on

the noise processes, it is justified for the systems studied here. We

study a particular form of the PLL owing to the great practical importance

of the system and because it provides a useful vehicle for understanding

the extent of validity of the asymptotic methods for such systems. The

basic analytical techniques are from the theory of large deviations. One

seeks information on the escape probabilities, mean times, and on the most

likely exit paths and exit locations. Also, we seek information on the

interactions between the signals to be tracked and the noise which are most

likely to lead to exit. The large deviations technique is eminently

i . suited to this job.

Simulations are taken in order to understand the range of validity of

the asymptotic method. Agreement between the predictions and sample esti-

mates is good over noise intensity levels which seem to be ever larger than
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_ those typically occurring in practice. Since the events whose probability

is of interest have small probability, an importance sampling scheme is _

used to 'quicken' the simulations. The scheme works well. The required

measure transformations are suggested by the theory of large deviatic ¢,

and are obtained by solving the associated variational problem. The
technique seemzs to be very appropriate as both an analysis and design

tool for such systems.

Key Words: large deviations, approximations of systems with wide

bandwidth noise, importance sampling, quick simulation, small noise

-. diffusion models, asymptotic methods, phase locked loops, synchronization

systems.
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Let - I

I. Introduction .

Let () denote a wide bandwidth (BW) process (BW as X - 0),

0,<n<} a sequence of correlated random variables for each X > 0,
na

and w(.) a standard Wiener process. Systems of the types (1.1) to (1.3)

are frequently used models in stochastic control and communication theory

and elsewhere

(1.1) x = F (x ,~x)

(1.2) X 'I *X( + X X&
n n n n

(1.3) dx = f(x)dt + o(x)dw

The function Fx  in (1.1) is such that for small X, the process x (-)

is close (say, in the sense of weak convergence) to the diffusion x(.).

Similarly for the FX  in (1.2).

Typically, (1.3) is used as an approximation to the 'physical' models

(1.1) or (1.2). Signal tracking and synchronization systems (with noise

corrupted observations) represent one very important class of applications

in communication theory; see, for example, the enormous literature on phase

locked loops (PLL), [1] to [4]. For such systems, one or more of the com-

ponents of the state x in (1.1) might represent the error in tracking a

signal, and the others might represent internal states of the system (the

filter, etc.). TNpically, one is interested in estimates of quantities

"" such as

(1.4) P {x (t) j G, some t < T}

(1.5) E -c where T = inf {t: x (t) 4 G}
X(GG....

.... .... .... .. *.**v*.*.*~....*....*..*.*".-.. .
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for suitable sets G and times T. Estimates of such quantities are

generally quite hard to get for any of the models (1.1) to (1.3), but

certainly, much harder (if not impossible) for the wide BW driven system

(1.1) (or (1.2)), than for (1.3). Owing to this, one is often forced to

use some sort of asymptotic method.

Since (1.3) is much easier to work with than (1.1) or (1.2) one is

strongly tempted to find a diffusion approximation to x () or to {X.1

If the noise effects are not 'small,' then the diffusion approximation

II

method can give good results [19], [20]. But even for this case, it

might be hard to solve for the analogs of (1.4), (b.5):

(1.1) o ){x(t) tG, some t ) Ti

(1.5') ET -r P inf {t: x(t) G)

Often, one estimates quantities such as (1.4), (1.5) by assuming

that the noise effects are small; e.g., by using the model (1.6), and

estimating (1.7), (1.8) via some other asymptotic method.

*(1.6) dxc f(x )dt + EO(XE )dw

(1.7) P{xc(t) G G, some t . T}

c •
(1.8) ExrG 'TG T inf {t: x (t) G

We have mentioned two very different types of approximations. First,

letting BW s to approximate (1.1) by (1.3), then letting the noise

intensity go to zero (replacing a by cc) to get an asymptotic estimate

for (1.7), (1.8). This procedure is rather risky in that the estimates of
(1 7) -

i--i

. . . . . . . . . . . ."



3 1

'intensity' of the noise effects in (1.1) is small. See [5] for some

* examples. Basically, when c or the noise effects in (1.1) are small, the

events of interests are rare (e.g., the event in (1.4) or (1.7)) or the

* times (1.5), (1.8) very large. The escape phenomenon depends on rarely

occurring large bursts of noise, and the usual 'central limit theorem like'

*, arguments which are used to model (1.1) by (1.3) do not model these well.

In order to use an asymptotic expansion based on (1.6) for estimates

of functionals of (1.1), one must show that it yields the same results as

one would get from (1.1) if the BW went to and the noise intensity

went to :ero simultaneously (with an analogous result for (1.2)), not

first letting BW - , then intensity - 0. For a large class of noise

processes, such results are in [6]. These results seem to be crucial if

' one is to employ asymptotic methods for (1.6) to get properties of (1.1).

One interesting asymptotic method based on (often formal) expansions

and boundary laver matchings is discussed in [7]-[8]. A rigorous approach

- to such a scheme involves strong regularity and ellipticity conditions on

* the differential generator of (1.3). An alternative approach is via the

* theory of large deviations, where the estimates (1.4), (1.5) or (1.7),

(1.8), involve the solution to a variational problem [6], [91, [10], [11].

* A related small noise expansion is in [12].

Once the small noise (small e) expansion is obtained, one must ask

- how good it is for values of c which one might expect in applications.

To get such information, there seems (at the moment) little alternative to

-" simulation. The questions of model approximation and validation by simula-

• .tion will be addressed here for one particular PLL. Our PLL model is

* chosen both because it is important in applications and because it provides

a good illustration of the general method.

r-.



In Section 2, we formulate the particular PLL problem of interest

* here. The diffusion approximation form of this system is not of the form

(1.3) unless various ('double frequency') terms are dropped, the system

* reduced to 'baseband' form, and the wide bandwidth 'small intensity'

observation noise replaced by small intensity white Gaussian noise. This

* procedure is, in fact, valid for our case, under quite broad conditions.

* Reference [13] deals with a related problem, and below we comment further

on the relations between that work and ours. The basic scheme of the

theory of large deviations and the simplifications of our model is dis-

cussed in Section 3.

Generally, with small noise effects, the 'escape' probabilities of

the forms (1.4) (or (1.7)) are very small; conversely (1.5) (or (1.8))

would be quite large. In order to get good simulation results with a

reasonable amount of computational effort, a form of importance sampling

is used. The idea is to change the measure on the original probability

space in a way which increases the probability of the 'rare' escape event

on the time interval [0,T]. Then, we get the required estimate by an

inverse transformation. A natural way in which to do this is suggested by

the mathematics of the theory of large deviations, and (as will be seen)

works very well. The idea was first formally used in [14], and is dis-

cussed in Section 4. Simulation results for the PLL (with a constant phase

process) appear in Section 5. It is remarkable that the estimates given by

the asymptotic theory are quite good even for rather large values of c.

Let 6(-) and ~e (for model (1.6), or () if the model is

* (1.1)) denote the phase to be tracked and its estimate, as given by the

* PLL. The error 0(-) - et (.) (or e(-) - e .) will be a component of

the state x, and we use sets G of roughly the form G =G 0  I x: 16-0l < 1

0r



This set is standard in the study of the PLL, since when the error reaches

IT- the system can 'lose track.' An advantage of the large deviations

approach is that one can (rigorously) get information on the most likely

locations of points of escape from G, on the paths in whose (small)

neighborhoods escape is most likely, and on the most likely magnitudes of

the noise effects when escape occurs. When the signal is time varying, the

scheme gives the most likely interactions between the signal and noise

which lead to escape.

In Sections 6 and 7, we discuss the results when the phase varies as

it would in a digital pulse phase modulation system. The model and the

simulations are discussed and one can clearly see the interactions between

the anticipated changes in the signal and the noise processes which are

most likely to lead to escape.

An interesting stud) of a related problem is in (13]. The PLL in

[131 is somewhat more complicated than ours. They start with a 'baseband'

system of 4th order and reduce it to a 2nd order system. The input signal

has wide BW of 0(K) , where k is also a system gain, and the observation

noise intensity (E-" is used there rather than E) is small. Since the

system is not of the form (1.6), a scale change in both time and state is

made (in an c, k-dependent way) in order to get a diffusion model whose

driving Wiener process is multiplied by a small parameter. Let L denote the

differential generator of the rescaled system--which we can suppose has the

form (1.6). Let V (x) = E -r Then, formally, L V (x) + 1 = 0, x E G,
x

*l -", H r-
1V (x) = 0, x c G. Write VE (x) = exp [H + C(x) + higher order terms].

Via a formal expansion and boundary layer matching method, an interesting

(but heuristic) approximation for C(x) and H are obtained. Their simu-

lations were in good agreement with the theoretical predictions over the

4"
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range of E used. Although the systems are hard to compare, it seems that

our range of E (or at least our range of noise effects) is somewhat
lr "

larger, if one uses (e.g.) estimates of (1.7), (1.8) as a measure of noise

effects. The results are hard to compare directly with ours, since the

s)stem types are quite different, and because of the way e and k are

buried in the time and state scaling in [131.

Our method would not get C(x), but the importance of this term,

in general, is not clear. If E is large, then the (small e) approxima-

tion to this term might be unreliable. If E is small, the overwhelming

2
effects are due to exp H/c

. . . . . ... "

*l ° • .. . ...



7

2. The PLL: The Model and Approximation

The basic physical system model is in Fig. 2.1. The VCO (voltage IF

controlled oscillator) is a device whose output deviates from a reference

frequency according to the input voltage. In order to get an asymptotic

analysis from a reasonably practical perspective we proceed as follows,

- using the fact that for many, practical systems, the carrier frequency is

.i high and the BW narrow relative to the carrier but high in an absolute

sense. We use a (high) carrier frequency wy and an observation noise

process whose BW is of the order of 1/y, but is small relative to w".

Let r, be such that n /y - 0 as y - 0, and let w= W /n for some

W 0 *

Let .(.), i = 1.2, be mutually independent zero mean second order

stationary processes. The BW of &i( will be of O(1/y). Let p = (c, y).

Following a common practice in communication theory, we model the observa-

tion noise in the 'passband' form no(t) = EuY(t), where

" (2.1) u"(t) = &(t) sin w t + E(t) cos wyt

The c indexes the intensity of the noise and y the BW. The following

two models for E(.) can be used and cover many cases in practice. Fur

case 1, let EY(t) = gi(t/y)/r- , where E.(.) is a component of a

*stationary Gauss-Markov process with an integrable correlation function.
t

Write J(t) f &(s) ds. Then the pair (w (),wy()) converges weakly

to a pair of mutually independent Wiener processes, each of which has

covariance f E (s)C(O)ds = 02. This is one standard way of modelling

wide BW noise. We prefer to separate the parameters for intensity and Bh,

although they can be combined. Similarly for the case below.

.•.

* * . .. . . . . .
•."." .-.
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Aosin(wt +e)+L
efl7 (t)
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Much physical noise has an 'impulsive' origin. The 'raw' impulses are .'V

either filtered by a circuit or system, or else the impulses are actually

pulses whose intensity decreases rapidly. To model this, we use the

*second case where Et (t/Y)/Y. where E(') is a filtered impulsive

noise process, the jump rate and moments depending on y (increasing and

decreasing, respectively, as y - 0). The specific model is Case II of [6].

The pair (w (.),w (-)) again converges (under appropriate conditions on

the jump rate and moments) to a pair of independent Wiener processes with

covariance 02. See [6) for more detail. _.

The input to our PLL (signal plus noise) is ." .

uO (t) = A0 sin (W t + e) + EuY(t)

and the system equations are (see Fig. 1)

(2.2) V Avo + B cos (w t +eP)jii(t)

O=HvP -

where A is a stable matrix. Owing to the complicated form of the

expression (2.3), (2.2) is not suitable for analysis or computation.

cos (WYt + 6P:'-.-.

A0  A
0 si(e- 0 ) +0 sin (e+ip+2,,It)

*" (2.3)
+ - [E"(t) cos 6(t- EO(t) sin 61]

2 1 2

+ -[E,(t) cos (2wyt+6 p ) * E (t) sin (2w t+ ')].

, If we were justified in dropping the parts of (2.3) containing w , then

we could replace (2.2) by the system -

d::
ri?'
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A0 
..

p =A B( sin (-6 0 )

(2.4) + Cos sin
2 1 2,

If, furthermore, we were justified in replacing the Y(.) in (2.4)'

- t h e E' 1

" by white Gaussian noise of intensity a, we could use the model (2.5) for

*-" th e 'asymp tot ic ' ca lcu lat ion s . --

C C A0
(2.5) dv6 = Avdt + B -- sin (e-e )dt

2r . + B o d w 
-

e HvC , (-) = -Hvc if 6(t) = constant.

It turns out that one can, in fact, make all of these approximations |i
in the sense that the asymptotic (E -0, y-0) estimates of the escape

probabilities and times will be close. The sense of 'closeness' is dis-

* cussed in the next section, after we introduce some concepts from the

theory of large deviations.

YIWith arbitrary WB noise models such that 0() converges
1 1

weakly to a Wiener process, the estimates of escape probabilities and times

for (2.2) or (2.5) might be very different for small c,-y. For example,

if E( is a scaled continuous parameter Markov chain or if the

moments of the impulses in case 2 increase too fast [6]. One must

exercise considerable care in replacing (2.2) by (2.5).

r
- *. A: t3 a . :!:t* * . . - - * :J .
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3. Large Deviations and System Approximations

Refer to (1.3) and (1.6) and let o(-) and f(.) satisfy a uniform

Lipschit: and a linear growth condition (i.e., If(x)1 < K(l+xl)).

Define the functionals H(.,.) and L(.,.) by H(a,x) = a'f(x)+a'a(x)c'(x)a2/2

and L(S,x) = sup [ 'a-H(Q,x)]. In our PLL model the driving noise is

degenerite. To prepare for this, consider the special case where

(x1 x2) x and O al is uniformly positive definite and

(3.1) dx1  f (x)dt + al (x)dw

dx, = f.,(x)dt
•. '...,.

Split a = (a1,a 2 ), etc. Then

H(a,x) f(x) f 2 (x) all(x)(x)al/2

and

(3.2) L(B,x) = (l-fl(x))' 1 (l$1"fl) x ))  '' J"":

if a2  f 2 (x)
2 2

; O otherwise.

Define the action functional

=rT
(3.3) S (T,) L(;(s),4(s))ds , for

x

0(0) = x , (.) absolutely continuous

= 0 otherwise. "

:: .. .. .. . . . .. .. : .. -.. . .... .. .. . -.- , . . ... . . ...-... . .. ,. . .. ,
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Let x = 0 be an asymptotically stable point of x = f(x) with G

being a bounded open set whose closure G is in the domain of attraction

of {0}. Define

SS (T)= i~f Sx(T,) ,'

(3.4)

S lim S (T)x x

i where the inf is over all €(-) which escape G by time T. Then,

under broad conditions on G [9,10]

(3.5a) lim C2 log P {x{(t) 4 G, some t,<T} = -S (T)

(3.5b) lim c2 log E T = So  x G
: xG 0'

If (3.5) does not hold for a particular set G, it will hold for a small

perturbation of G. A maximum likelihood interpretation of (3.5) appears in

the next section.

Now, let us relate the above facts to the system (2.5) Let 6(t) =,

a constant. For notational convenience absorb the A /2 into B and the
0

o/2 into c, and rewrite (2.5) as

(3.6) dv = Av dt + B sin (0-e)dt + Bcdw

(e-e5 ) = -Hvc dt

N Write x = (v,0-6). The set G of interest here is G = G {x: le-el < v) n G2,21
where G is the domain of attraction of the stable point x 0. The

closure G, is compact, but not all of it is in the domain of attraction of {0},

since (0,±r) is also a singular point. Nevertheless, owing to the special form,

the additional problems are minor and (3.5) holds.

ir
-. - . ...... .. ....... ..... .* " ' ,. , .. -. . . .-*.*. . . . - - , . . . . . . -.--
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The approximation (2.5) to (2.2) is valid [6] in the sense that, for

xEG (p' O implies E- O, X-*O)

(3.7a) lim E2 log P (x (t) dG 1 , some t T)p x

lim E2 log p {xE(t) 4G 1 , some t T)
E x

(3.7b) lirn 2 log Ex-[P lim £2 log E """
P 1  e :-

The proof of (3.7) involves details from the theory of large

deviations [6]. But without such a proof one could not justify using the

simpler system (2.5) for computational purposes. The values of (1.4),

(1.5) depend on appropriately timed (rare) bursts of noise and a simple

diffusion approximation argument is inappropriate.

In order to relate the special form (3.1), (3.2) to (2.5), we change

coordinates if needed, so that B takes the form of the column vector

(b,0,0,.-.,O) and let xl  v1 , x2  (v2, ,-). Then a = b

Computation of S and S*. Let us put the variational problem

involved in (3.4) into a more enlightening form, and work with the special -

case (3.1), (3.2). Let a2 = f2 (x). Then
2~ 2IL(6,x) :ji [a a (x - ~af(

a1Ol(x )f1(x)al -.'.
2 1 2

22

- Iu(x) 1/2

where u(x) a- (( f (x)). Then

°%
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4 1 T
(3•8) (T , ) =I- ds

x x0

with u s d

(3.9) = f(4) + o()u , 0(0) = x ,

* With the form (3.7), (3.8), the calculations of S (T) and S are
x X

those for an optimal control problem. For our case (3.6),

Av + B sin (e F bu

(3.10) f(x) = , o(x)u :'
L:Hv  ..-

0 .

Define V(x) = S. Then, purely formally, V(.) satisfies the

Bellman equation [11,17],

(3.11) min[IUV(x) + u 2'2]= 0 , x E G

V(x)= 0, x E G1  ,

where Lu is defined by L Ug(x) = grad'g(x) * [f(x)+ a(x)u].Sx*
Whether or not (3.10) is formal, the desired solution V(x) = S can

x

be obtained via the finite difference method of [15], Chapter 9.9.6, or [16]
4.:.

where a method for a slightly simple problem is discussed. Let h denote

a finite difference interval and e. the unit vector in the ith coordi-1

nate direction. Define the h-Grid Gh C Gln {jk e h, k. = all integers}.
h1 - ,i1

By an appropriate choice of finite difference scheme for the derivatives

h
in (3.10), one can obtain a finite difference solution V (x) which converges

to S uniformly in any compact set in G The conditions required in [15]
xV

hold for our case (3.10), and G = G1. The computational method also yields an

h
approximation u (x), x E Gh to the optimal control u(x).hy



-..... '.-

In the computation, we used the set Go  {x: le-6 1 < 1 in order not

to have to calculate the domain of attraction of x = 0. But the result is

the same, since once the path exits G1, it will leave G with u(x) 0

(no additional cost) . :i iI

I V

" .

.-i

E .

." I
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4. Exit Paths and Measure Transformations

4
We work with the quantities (3.5) for the system (3.6), but there

[
are identical interpretations for the left sides of (3.7). Let there be a

T"
finite number of minimizing functions ( i<k} for S (T). Then

for any A > 0 and small e, the overwhelming proportion of the paths

which exit on the time interval (0,T] starting at x, exit in

u NxW'(.)), where N, is a X-neighborhood. But the probability of exit

on [0,T] is small for small E.

Let there be a finite number of minimizing functions (, i < k, for S
0'

For our PLL problem these occur in pairs in that if j(.) is a minimizer,

so is -€(-). (Obviously, there are an infinite number of minimizers

*(.), since we can always let $i( - ) = 0 on any interval [O,tl], t 1 > 0;

but we do not need to count these.)

For small c , the path x (.) spends most time in a small neighborhood

of the origin. Occasionally a large burst of noise pulls it out but, with

a very high probability, it will return to a small neighborhood of the origin

before exiting from G1. Eventually, however, the path will (w.p.1) leave G1.

When it does, loosely speaking, it leaves in a small neighborhood of the path

{€.)'1. We can quantify this as follows. Let X > 0 and let 12 > 1l > 0
1

be small, and let N,. (0) denote a -i neighborhood of the origin. Then [6]

for x E N (0,

(4.1) lim P fxE(t) E U N,(ei(t)) until the exit time *c x i
E

x (.) exitr G and does not return to N (0) after leaving
I1

N. (0)}
- 2

r"
There is only one pair of optimal paths. The parts of the functions

SN

-- 1
." X %.-
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Ti{¢.(.), i5k on any finite interval [O,T] converge to { i(.) i.k}

on [0,T 1 ] as T- "

It is clear from this discussion that the most likely noise sequences

which lead to exit are of the form (write ()=( 1 .),42(.) , via the form (3.1))

(4.2) W¢)E))1 (t) (0) f fl((s)ds] .

where (.) is a minimi:er for S. From (4.2), we can get a clear idea

of when the noise (leading to exit) will be large, and in which direction

it will push the system.

A likelihood function interpretation of S (T) and S It is
x - 0*

suggestive to view (3.4) as selecting an exit path which maximizes

E
a likelihood function. Since for each E > 0, x (.) is not differentiable,

one cannot speak of a likelihood function in a strict sense. But, for the

Gaussian case (3.1), one can get an intuitively reasonable maximum likeli-

hood interpretation. Even from this the estimates (3.5) do not follow

readily" without the large deviations formalism.

Consider the discrete parameter process

(4.3) X +I = x '
.

+  Af(X 'ir + /rAc (X '*)ci

where { i} are i.i.d. and normal (0,1). The likelihood function of, _ '

{X. , i < T/L} evaluated on the path Xi = (iA), iA < T, is (4.4) times a

factor not depending on the path.

T/Lx-l
(4.4) L (T,¢) = fl exp Iu(iA)12

0 2c2

where

€4(i- +AX) =(iA) + Lf(¢(iA)) +

.. . .. ...-........-.......-...- ............................................................................- .
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We have

(4.5) S(T,O) = -lim E2 log L (T,O) FA4

V Let x () denote the piecewise linear interpolations of {X A-

with interval A, and TE '/  the escape time from G of xE'L (.). By the

standard methods of the theory of large deviations [9,10], it follows that

if A - 0 as e - 0 and under broad conditions on G

A t * "'

lim :2 log P {x A (t) € G, some t :T) = -S (T) L

E,Ax 
x

(4.6)

2*, 0
liM E2 log E T - x E G
C," xG

If (4.6) does not hold for a given G, then it will hold for a small

perturbation of G. Also, (4.6) holds for the discrete time form of our

special case (3.6).

These estimates provide justification for simulating the discrete

parameter system in lieu of xE(.).

Importance sampling. Now that we know what the 'most likely exit

paths' are, we are ready to define the measure transformation used to

facilitate the simulations. Following the idea in [14], we transform the

measure so that exit on [0,T] is not a rare event. T will be large .

enough so that SO ' So(T). To get the measure transformation, we use

hthe approximation to the optimal controls u (-) given by the computa-
tional procedure discussed at the end of Section 3. For x E G G but not

in the grid Gh, we define uh(,) by a linear interpolation over the values

in adjacent grid points. For simplicity, we write u(x) below fcr uh(x).

Write the system in the form (4.7) with associated measure PO" We work

on an arbitrary interval [0,T]. Define xc(') on [0,T] by (4.8), with

associated measure P¢.
u U " °%
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(4.7) dx = f(x )dt + cadw

(4.8) dxE = f(xE )dt + ou(xE)dt + £adw .

Again, using the notation x = (xx),o = (0O), - the Radon-

Nikodyn derivative is [18]:

(4.9) dP (w) exp T- J u(x(s)) 2 ds

dPE  2 2
u

- u(x(s))o1 [dx (S) -fl(x(s))dsI-

"e use a 6iscrete form in the simulations. Thus, define the processes -.

-1, {Xi ' ) (with associated measures P0  P,

'4.10a) X~ , X + Lf(xEA + C'AG
i+l 1

(4.1b) = + 6f( i' ) + AC u( 'A) + t ACi:
i4.11)1i+I

We always let u( =0 after the first exit time from G= G1. We

have, for = M: , f
li+l i 1 i

dP T/A-l 1 2 -£,A -1,,,
0 A.tv~ 1X )o 'A

(4.11) dpEO (w) TI exp - uL Lu A) l A-u' ) 1a-

dPEA0 £2 1
u

We will simulate using (4.10b). Let M denote the number of (mutually

independent) runs, indexed by wi' i . M. Define the set A whose

probability is of interest:

A = {paths exiting G = GI by time step T/L, starting at x(O) Ft 0)

Then (4.12) is an unbiased estimate of PoCA the escape probability

%° -

'., ..-.
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from G1 for (4.10a).

i "<M
(4 .12) LwP , '--.EA" " M ~~~1 dPE '  u i  ~iA "

See [14] for additional discussion on the use of such transformations,

particularly for the sense in which they are optimal (in the sense that

they minimize the variance of certain errors, among all such measure trans-

formations. As seen in the following sections, the importance sampling -

methods works very well.

• o

"" -.

. .°
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5. Simulations with e(t) e0 = 0

We use a first order filter, and the simulated PLL equations are the IF

discrete time form of
C %

dx= -axcdt + b(sin x dt + cd.) ,?.
1 1(5.1) .

£ Cdx• -x dt ' x2  (0- )'

In all cases, a = 2, and the results in Tables 1 to 3 are tabulated

according to the value of b. In order to best compare the simulation and

the theoretical estimates, we write (4.12) in the form exp -g§(T)/E2 and

tabulate S:(T). We use - (T) for the equivalent sample probability of

escape on [O,T]. There is clearly a very close agreement between the

theoretical predictions and the results of the simulations.

The (# escape) denotes the number of simulated paths escaping on [O,T]

under the transformed measure (for the importance sampling), not the measure of

(5.1). It indicates the savings in the cost of simulation. The 'eigenvalues'

denotes the eigenvalues of the noiseless (5.1), linearized at x = 0.

W L

:? , -. . . .. .

" . S.-.
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Table 1

b =1, eigenvalues (1,1), A =.02, 200 Runs P

T C Escape S 0(T) A1T4

3.5 .2 15 2.55 2.59 .8 10o2

.4 83 2.55 .95 x 1

.6 121 2.55 .84 x 10

.8 137 2.39 .24 x 10

5 .2 42 2.55 2.56 .16 x 10-27

.4 155 2.46 .21 x 106

.6 171 2.39 .13 x 102

.8 174 2.06 .40 x 10-1-.'

.1 184 1.80 .17

L
7.5 .2 129 2.55 2.5 .81 x 102

.4 192 2.39 .33 x 10-6

.6 194 2.22 .21 x 10-2

.8 196 1.99 .45 101

L

7- '7
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Table 2

b 2, elgenvalues (-1l± vT,~ .02, 200 Runs I

* 
-e

T E # Escape S T0 T

1.5 .2 5 1.28 1.36 .18 x i1

.4 58 1.41 .15 x 1-

.6 95 1.32 .25 x 101

.8 109 1.37 .12

2.2 .2 40 1.28 1.29 .12 x 101

.4 128 1.25 .42 x 10-3

.6 150 1.09 .49 x10-1

.8 157 .84 .23

3.3 .2 107 1.28 1.25 .29 x 10-13

.4191.12 .93 x 1

*..6 179 1.02 .59 x 10~
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Table 3

b 0.75, eigenvalues (-112,-312), A .02, 2100 Runs

T CEscape S 0ET ~ T

S.2 9 3.43 3.45 .38 10 7x

*..4 95 3.41 .56 x10

.6 124 3.39 .82 x 0

.8 140 3.21 .66 x 10-

* .7 .2 47 3.43 3.37 .26 10i&3

.4 156 3.35 .82 x109

.6 175 3.12 .17 x10

.8 181 2.82 .12 10

L4I

A-
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PL

Comment on the Choice of T

S* a

To get (T) and the associated measure transformation, we need

controls which are time dependent (hence more computation and memory is V

needed). In applications, the value of T is not very important (multi-

* plying or dividing a reasonable T by a constant k also yields useful

results). The c-effects are much more pronounced. For 'large' T,

Sx(T) S0  and most of the 'control activity' for the optimal escape

path occurs long before T. In our problem the optimal exit paths exit at

e-6 ±7 v = 0, and take an infinite time to reach these points.

Because of this, we chose T as follows. Using the optimal control u(x)

and the noiseless system, we start the trajectory very close to the origin
* _

(not at x = 0, since u(x) = 0) and let T denote the time the path takes

to get to a position x near the exit point where S is very small. Our
x

larger T-values are about 1.25 T

Discussion of the Data

As can be seen from the data, even for the smaller T, the measure

transformation obtained with the (nearly) optimal u(.) for Sx  yields

excellent results. If the prediction is close to the sample estimate for

large T and small E (say c .2), then we are very likely justified in using

the small c values of Sc(T) as estimates of S0 (T), and then we can compare

these to the sample estimates for large values of c.

The role of the measure transformation is made very clear by the

tables. E.g., for c = 0.2, b = I and T = 3.5, the probability of escape

is 10 An estimate of such a quantity would require an impossible

amount of computer effort. But, via the importance sampling measure trans-

- * .... .. . . . * .
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formation, in 200 runs there were 15 escapes. For the transformed measure

this corresponds to a (not small) probabilitN of 0.075. Under the inverse

transformation, it becomes the true estimate of the order of 10-. The

method is efficient, indeed. .

The size of the noise effects can be judged by the estimated escape

probability. For realistic systems, one would expect small errors

-4(perhaps of the order of 10 or smaller). Yet our predicted results are

quite good even for values of c which correspond to much larger escape

probabilities.

As c increases, the theoretical predictions increasingly understate

*the escape probability: the noise is stronger and it is unlikely that the

random escape paths of x~ . are concentrated in a small tube about the

optimal escape paths.

The vector field of the noiseless system (b =1.0) is in Figure 5.1,

and for the optimally controlled system in Figure 5.2. The control

activity is negligible near the origin or near x1 = 0, x2 = ±r, or for

large values of x1 The most likely noise bursts which lead to exit occur

when the filter state x I is not large. For small c, the exiting paths

were usually in a small neighborhood of the optimal paths (0 y), or

(0 -~-y), as indicated in Figure 5.2. Even when c is rather large, the most

likely exit paths are reasonably close to the optimal paths. Two typical cases

are plotted in Figure 5.3, one exiting at (0,ir) and the other at (0,-rT).

-52
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6. Time Varying Phase: The Model

In order to illustrate the interactions of signals and noise which

lead to the most likely escape routes, and to check the range of validity

of the large deviations estimates when the signal varies with time, the

following version of a pulse phase modulation system was considered. The

data signal is a sequence of pulses, each of value ±1 and constant over an

interval of unit length. When the sequence changes from a +1 to a -1, the

transmitted signal phase e(t) goes from +7/4 to -T/4, and conversely

when the data sequence jumps from -1 to +1. The probability of changing

sign is p E (0,1). The object of the PLL is to track e(t) (hence, to track

the data sequence). Often the transmitted signal for such a data sequence

changes from ±7/2 to +7/2, and a form of the PLL which is better suited

to digital data is used. But the system used here well illustrates the

general principles.

The system is (for a general filter)

(6.1) dxE = Av dt * S cdw + sin(e-6e)At]

d(e-ec) = -Hvcdt + dJ

where J(.) is a jump process which jumps by ±7/2 depending on the direction

of change of the sign of the binary data sequence. We take the paths of 6(.)

and ec(.) to be right continuous.

The comments on large deviations in Sections 3 and 4 all hold here, by

r proofs which are very close to those used to support the assertions in those

sections. Owing to the presence of the time varying signal, the action functions

must depend on time as well as on the direction of the next possible change in

J(-). The appropriate action functional is

= , lu(s) 12s,
(6.2) S (T,4,J) ~ uslds

x 2

............ '....-....'.".'.""".-.• * .. ..".."."" '".:'.-." .". .".....-.%.€... -.
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where f t u"I

(6.3) d f()dt + Budt,,J-

Here T is the initial time, and J() s the inital condition and J the

future jump path. J(.) also acts as a control force here -but is confined to_ -

be a possible signal path. Define p l pat

(6.4) S* ,x(T,±) :inf S , (T, ,J) '

3, (6.5±)li W li S x(T,±)' T- ,'.

- where the inf is over all 0()and J(.) satisfying (6.3) with :

(t) i Gl for some t .<T, and the next possible jump of J(.) after T ,

is Then, via mild modifications in the standard methods ""'

(6.6) liM E:2 log px~ ,[

I )[

Also the analog of (3.7a) holds.

The limit S (_) V(T,x,±) has an optimal control interpretation
Tfx

V(T,x,±) ain {S (T,4,J): 4(0) : x, (6.3) holds,
XT

T,¢,J x

4(T) G ,next possible jump after T is ±.

V(r,x,±) is periodic in T; V(n,x,±) - V(O,x,±), all n, and there is a possible

discontinuity at = integer value. Because of this, V(i,x,±) satisfies the

Bellman equation (6.7), (6.8), for x E G with V(U,x,±) 0 for x * GI.

(6.7) 0 = min [aV(T X ,± )  L uV(i,x,±) + u /2] for 0 . - < 1
u aT

r
. . . . . .... /. -
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(6.8) V(1 x,t) = min \'(O,x±(C/ k,), V(O,x,±))

The numerical procedure alluded to in Section 3 can still bc used--

We use the state variable triple ,x.±', with x E C and T E [0,Tj.1 . ,.--,
All the comments in Section 4 concerni c the most likely exit paths

continue to hold, except, of course the exit paths and solutions to the

- variational problems might have jumps at integer values of time.

The importance sampling method and measure transformation are also

-. almost identical to those described in Section 4. We work with the discrete

" parameter systems on (O,T] (with meisures P and'am and P ' respectively,

where u is the optimal policy obtained from (6.7), (b.8)).

(6.9) X0, + AX + 0 )i+l 1 1 0o 0~o 1 J(iL+A )-j(iA

S Af(X ) + J(i+)-J(i(6.10) i+1A - 1EA+ £A(J1+ Ji+)Ji

Then with u(x,t,j) denoting the optimal control at time t, when the

next possible jump can be j, we use the measure transformation

(6.11) M () = TI exp !42 lu'LE-A iLj( iA)) L

dP ' 0
u

1" 1 i

where o = b and = - (X

*t

T was selected as in Section 5 for the constant phase system.

%-.
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7. Simulations With Pulsed Phase

The simulations all started with x(0) at zero, and with the next

possible jump in phase being positive. Two types of jump sequences J.

were used. In the first, denoted by 'random jumps,' the phase changed by

±7r12 at each unit of time with probability p = 1/2. Solving the varia-

tional problem for S 0 0  yields a unique minimizing pair (),() where

~() is an 'optimal escape path', starting at x =0 at time T 0. The J(-)

might have one or many, jumps in it. When J()was used in lieu of random

jumps, the results are labeled 'optimal jumps' in the tables below.

Tables 4 to 6 list the results of the simulations (x(0) 0, T(O) 0)

and excellent agreement between the sample estimates and the theoretical

predictions. For example, in Table 5, where c =.6 and the estimated

escape probability is the very high 0.37, there is still good agreement.

The results of the simulations with the 'optimal jumps' should be somewhat

more consistent with the theoretical values of S0 0 W± than would the 'random
450 0

jump' simulations, since it is the optimal jumps which are used to compute So ~.j±).

But agreement is good for both cases. The sample SE(T) values for the random jump

case are larger than for the optimal jump case, as expected, since the optimal

jumps are calculated to help force the system out of G. But, as c- 0, the two

estimates are close. For small c, the exit paths were in a small neighborhood of

the optimal exit path. Two optimal exit paths are plotted in Fig. 7.1, for b I

and b =0.75, when the next possible jump is +r~/2 in the first case, and -r/2

in the second case.

For the case b =1, the optimal path waits until time T 1, with zero control

u(x) them jumps to (0,7r/2), then a large control effort moves it close to the

optimal exit point (0,7r), during which time there are no further jumps. For the

rp
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case b = 0.75, the optimal exit path involves waiting at the origin with

zero control until a time T1 < 1, then being controlled to yI in [T2,1], I

then jumping to y, at T = 1 and finally having a burst of control effort

which moves it close to the optimal exit point Y3, during which there are no

further jumps. The intervals of heavy control effort (and the corresponding r
directions) correspond to the most likely intervals during which a burst of

noise (and its corresponding direction) will lead to exit. The first burst of

noise on [T2 ,1] positions the path to take best advantage of the next jump. Of -

course, even if the first burst of noise occurs 'on schedule', the next jump

might not occur 'on schedule'. Then, most likely, the system will drift back

to near the origin. What we have described are the paths in small neighborhoods

of which exit is most likely to occur. The sample paths some time before the

'final sequence' leading to exit might be rather complex--owing to the jumps.

%

. . . . . . ..-
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Table 4
S.

Eigenvalue (-1,-I), A - 0.025, b = 1 F

T = 10 Sec, 500 Runs

Optimal Jumps:

T C # Escape S ) (T) P (T)

10 .2 24 .79 .82 .13 x 108

.3 145 .82 .11 x 10

.4 251 .79 .72 x 10-2

.5 335 .71 58 x 101

.5 .6 399 .63 .17

Random Jumps, p = 1/2

10 .2 25 .79 .83 .11 x 108

.3 125 .87 .66 x 10- 4

.4 219 .86 .48 x 102

.5 265 .86 .32 x 101

.6 312 .84 .97 x 10-1

15 .2 64 .79 .81 .17 x 10

.4 274 .82 .59 x 10-,

9L
5 .2 10 .79 .84 .82 x 10

'.22
.4 95 .98 .22 10-2

I i

I r

, .'.. . - '. -. .. "-... .- .- ". * ~- v. '-. " - .- ."", . a , .- " "' ."2"-" S I.pa.".- . -. m b.-" . ' h -. "' ' " " - " "' "
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Tabl1e 5

(2,2) Eigenvalues (-l± VIT), A~ 0.025, b 2r

NT 6 Sec, 500 Runs

Random Jumps., p=1/2

VT C # Escape S (T) (T

6 .2 86 .40 .40 .5 10

.3 187 .41 .11 x 101

.4 233 .44 .63 x 101

.5 299 .41 .20

.6 367 .36 .37

.7 407 .31 .53

8 .3 228 .40 .38 .14 x101I

',7.
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Table 6

Eigenvalues (-1/2,-3/2), L = 0.025, b = 0.75

T = 10 Sec, 500 Runs -

Random Jumps, p = 1/2

T 6 # Escape S (T) P (T)

10 .2 180 1.15 1.11 .84 x- .1

.3 235 1.16 .26 x 10

.4 279 1.24 .42 x 10 - 3 I

-2.5 315 1.18 .88 x 10

.6 319 1.23 .33 x 10.

.7 354 1.19 .88 x 10

.8 373 1.14 .17

.9 409 1.08 .26

12
8 .2 124 1.15 1.11 .94 x 1012

S.3 183 1.20 .17 x1

.4 242 1.24 .44 x 10- 3

.5 239 1.28 .61 x 10-2

.z..

'p.

n ,-
. . ... .
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Figure 7.1 indicates an optimal exit path, but it does provide a picture

of where and when the controls are strongest (equivalently, where and when

the noise bursts which lead to exit are likely to occur). We will now describe

part of the time dependent control behavior, for the case b = 1 on the interval

[0,I), when the next possible jump in phase (e-e) must bc negative. Since

the control is added to the uncontrolled dynamics, it will be useful to refer

* to Fig. 5.1.

There are 2 regions where the effects of the control are large and its

* effects obvious. In a small neighborhood below and to the right of (O,r)

(in the phase plane) the controls are large and positive and essentially

* independent of time. Here, the control is trying to complete the job of

* pushing the path out of G. The relatively small time dependence is

* probably due to the fact that for the deterministic optimal control problem,

* there need not be another jump. If the process is close to (O,r), it is

'cheaper' to treat it as though there were no additional jumps. The second-

area where the controls are large is in the brood region below the origin, but

here the behavior is quite time dependent. The controls act to counteract the

.1 unforced system's damping, so as to position the process such that a Jump of

-7/2 will (or nearly will) drive the path out of G .Directly below the

origin the control takes negative values, which increase as T - . The dominant

* effect here is to 'slow down' the path and prevent it from being pushed into

* the right half plane, where it would be swept upward and further away from the

-r/2 phase level before the next 'negative' jump occurs.
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